
A Brief Introduction to Complexity

Classes and NP-Completeness

MAD 3105: Discrete Mathematics II
Spring 2025

Adam Rumpf*

An important concept in theoretical Computer Science is the idea of complexity classes, which
provide a precise way of categorizing problems according to the computational work required to
solve them. Since our main textbook [3] does not include a thorough description of complexity
classes, these supplementary notes will provide a brief description for use as a reference. These
notes are based primarily on Cormen et al. [2].

As a caveat, note that the following descriptions omit many details and simplify many ex-
planations. The precise definitions of concepts like decision problems, complexity classes, NP-
completeness, and polynomial time reductions all involve concepts from theoretical Computer Sci-
ence that go well beyond the scope of this course. Our primary focus will be on gaining an intuitive
understanding of what NP-completeness means, and on understanding the structure of a typical
NP-completeness proof.

1 Preliminaries

We will begin by establishing some of the basic definitions and concepts required to describe com-
plexity classes.

1.1 Polynomial Time

The primary topic of interest in Complexity Theory is describing how computationally difficult a
given problem is. We’ve seen through asymptotic analysis that there is a hierarchy of algorithmic
run times ranging from slowly-increasing complexity (constant, logarithmic, linear, n lg n, etc.) to
quickly-increasing complexity (exponential, factorial, nn, etc.). In Complexity Theory, a line of
distinction is drawn between problems that can be solved in polynomial time and problems that
cannot.

Definition 1.1. An algorithm is said to run in polynomial time if its worst-case time complexity
is T (n) = O(nk) for some positive constant k. Here, n is some measure of the “size” of the problem
(length of a list, number of vertices in a graph, number of elements in a set, etc.).

Roughly speaking, we interpret a problem as being relatively “easy” if it is solvable in polynomial
time, while it is relatively “hard” otherwise, in the sense that the problem is likely to become
intractable as its size increases. While it is true that some polynomials (like n100) grow very
quickly, and while it is true that asymptotic notation could be hiding some very large constants,

*Florida Polytechnic University, Department of Applied Mathematics, arumpf@floridapoly.edu

mailto:arumpf@floridapoly.edu
https://creativecommons.org/licenses/by-sa/4.0/

in practice most polynomial time algorithms for common problems are of degree 4 or less, so for
practical purposes polynomial time algorithms are substantially better than any exponential time
algorithms for large problem instances.

When we refer to a “problem” in Complexity Theory, we are really referring to a general
type of problem that can appear as many different specific instances. For example, finding the
maximum matching in a bipartite graph is a type of problem, while finding a maximum matching
in a particular graph G = (V,E) is an instance of that problem. It is always true that certain
specific instances of a problem may be easy to solve due to special structure, but determining
complexity classes depends on the general version of the problem.

There are many different complexity classes, but for our purposes the most important include: P,
NP, and NP-complete. We will define NP and NP-complete in Section 2, but for now we can define P
as the set of problems solvable in polynomial time, which are generally thought of as the “easiest”
types of problems we know about.

Definition 1.2. The complexity class P (for Polynomial) is the set of all problems that can be
solved by a polynomial time algorithm. Given a problem A, showing that A ∈ P requires showing
that any general instance of problem A can be solved in polynomial time.

It should be mentioned that whether or not a problem belongs to class P is an intrinsic property
of the problem, itself, independent of whether or not a polynomial time solution algorithm has been
discovered by humans. Some problems currently thought not to belong to P might actually belong
to P after all, but we cannot say for sure until a polynomial time algorithm is found (or until it is
proved that one does not exist).

To define the other complexity classes, we need to restrict our scope to a special category of
problem known as a decision problem.

Definition 1.3. A decision problem is one for which the only possible answers are “yes” or
“no”.

Some decision problems we’ve seen before include determining whether a given graphG possesses
various properties (e.g. whether G is Eulerian, whether G is bipartite, whether G is Hamiltonian,
whether G is triangle-free, whether G is connected, whether G has a strong orientation, etc.). Many
common optimization problems can also be phrased as analogous decision problems.

For example, the maximum bipartite matching problem asks us to find the maximum-cardinality
matching in a given bipartite graph, while the decision version of the problem asks us whether there
exists a bipartite matching of cardinality k for some given k. The decision version of a problem
is generally easier, and our definition for the NP-complete complexity class (in Section 2) will be
restricted to only decision problems.

1.2 Polynomial Time Reduction

It is common throughout mathematics to solve one problem by translating it into an analogous
instance of a different type of problem, thus enabling us to use a known solution method for the
second problem to solve the first problem. For example, we’ve seen that the maximum bipartite
matching problem on a graph G can be solved by developing a related flow network G′ and finding
a maximum flow in G′ that corresponds to a maximum matching in G (see Figure 1.1).

2

Figure 1.1: (Left) A graph G for which we want to solve the maximum bipartite matching problem.
(Right) A related flow network G′ whose maximum flow corresponds to the maximum bipartite
matching of G.

Stated more precisely, consider the following two decision problems:

� Maximum Bipartite Matching (Decision Version): Given a bipartite graph G and a
number k, determine whether G contains a matching of cardinality k or greater.

� Maximum Flow (Decision Version): Given a flow network G and a number k, determine
whether G has a feasible flow of value k or greater.

The transformation discussed earlier in the course allows us to take any arbitrary instance of the
first problem (maximum bipartite matching) and to answer it using a related instance of the second
problem (maximum flow). The two instances correspond to each other in the sense that G has a
matching of cardinality k or greater if and only ifG′ has a flow of value k or greater (i.e. both decision
problems have the same answer, either both “yes” or both “no”). Moreover, the transformation
from G to G′ requires only a polynomial amount of work (orienting |E(G)| edges, adding 2 vertices,
adding |V (G)| arcs, and defining |V (G)|+ |E(G)| capacities). Then this transformation is what we
would refer to as a polynomial time reduction from the maximum bipartite matching problem to
the maximum flow problem.

Definition 1.4. A decision problem A is said to be reducible in polynomial time to another
decision problem B, denoted A ≤P B, if it is possible to translate an instance of A in polynomial
time to a corresponding instance of B for which both decision problems have the same solution
(i.e. the instance of A is “yes” if and only if the corresponding instance of B is “yes”). This
transformation is called a polynomial time reduction of A to B, or to B from A.

The symbol ≤P is not really an inequality, since it would not make sense to make an inequal-
ity comparison between two problems. It can be read as “is reducible in polynomial time to”.
Note that this is a transitive relation: if problem A reduces to problem B, and problem B re-
duces to problem C, then problem A reduces to problem C (via B), i.e. A ≤P B and B ≤P C
implies A ≤P C.

Previously our reason for reducing the maximum bipartite matching problem to the maximum
flow problem was because it allowed us to reuse a known efficient solution algorithm for finding
maximum flows (the Ford-Fulkerson algorithm) to find maximum bipartite matchings. Since max-
imum flows can be found efficiently, this reduction immediately implies that maximum bipartite
matchings can also be found efficiently. Importantly, the converse implication also holds.

3

Observation 1.5. If A ≤P B, then B is “at least as hard” as A. In particular:

(a) If B ∈ P, then A ∈ P. (That’s because having a polynomial time algorithm for B implies a
polynomial time algorithm for A, consisting of reducing A to B in polynomial time and then
solving B in polynomial time.)

(b) If A /∈ P, then B /∈ P. (That’s because, if there were a polynomial time algorithm for B, then by
point (a) there would also be a polynomial time algorithm for A, which would contradict A /∈ P.)

This observation also justifies the use of inequality-like notation (≤P) for denoting that one prob-
lem reduces to another, since the inequality indicates which problem’s complexity class “bounds”
the other.

2 NP-Completeness

Lots of problems have no known polynomial time solution algorithms, meaning that these problems
cannot definitively be placed in the complexity class P. However, even if a decision problem cannot
be solved in polynomial time, it is often easy to verify a solution that has already been provided.
The decision problems that can be verified (but not necessarily solved) in polynomial time make
up the complexity class NP.

Definition 2.1. The complexity class NP (for Nondeterministic Polynomial) is the set of all
decision problems for which a “yes” instance can be verified in polynomial time given a proposed
solution (or some other certificate). Saying that a problem “is NP” is shorthand for saying that it
belongs to the complexity class NP.

For example, the problem of deciding whether a graph is Hamiltonian can be easily shown to
be in NP. Given a graph G that is indeed Hamiltonian, that fact can be verified in polynomial time
by simply providing a Hamiltonian cycle and verifying that the cycle is valid (by checking that it
is a simple cycle that includes every vertex).

It can be readily seen that P is a subset of NP.

Observation 2.2. Any decision problem in P is also in NP (i.e. P ⊆ NP).

This is because a “yes” instance of any decision problem in P can be verified in polynomial time
without needing any solution certificate, since the problem can simply be solved from scratch in
polynomial time.

One of the central open questions in modern Mathematics and theoretical Computer Science
(and the subject of one of the Clay Mathematics Institute’s Millennium Prize Problems1) is the
P vs NP Problem, which concerns the relationship between problems that are easy to solve and
problems that are easy to verify. It is an open question whether P = NP, though most Computer
Scientists believe that P ̸= NP. This would imply the existence of problems that are in NP but
not in P, i.e. problems that are easy to verify but hard to solve. This brings us to the topic of
the NP-complete complexity class.

1https://www.claymath.org/millennium/p-vs-np/

4

https://www.claymath.org/millennium/p-vs-np/

Definition 2.3. The complexity class NP-complete is the set of all decision problems A such that:

(a) A ∈ NP (i.e. A is verifiable in polynomial time).

(b) Any other problem in NP is reducible in polynomial time to A (i.e. A is at least as hard as any
other NP problem).

Saying that a problem “is NP-complete” is shorthand for saying that it belongs to the complexity
class NP-complete.

Roughly speaking, this makes NP-complete the “hardest” set of problems in NP. If it turns out
that P = NP, then it would also be the case that P = NP = NP-complete, but the far likelier
scenario (and the one that most Computer Scientists regard to be true) is that P ̸= NP, in which
case P and NP-complete are disjoint sets, with the NP-complete problems being problems that
are verifiable but not solvable in polynomial time. For this reason, it is of practical importance to
know that a given problem is NP-complete, since this shows that the problem cannot be solved in
polynomial time (unless P = NP).

3 Proving NP-Completeness

It is not clear from the above definition how one would prove that a problem is NP-complete (or
even that any such problems exist), but this result was demonstrated in the early 1970s by the
Cook-Levin Theorem [1, 5].

Theorem 3.1 (Cook-Levin). The boolean satisfiability problem (SAT) is NP-complete.

More precisely, the theorem shows that the SAT problem (which will be explained in Section 3.2)
is NP, and that any other problem in NP is reducible in polynomial time to SAT (i.e. that A ≤P SAT
for any A ∈ NP). This result established the existence of NP-complete problems, since it was the
first ever problem explicitly shown to be NP-complete, but it also provides a method for more easily
“growing” a set of known NP-complete problems.

3.1 How to Prove a Problem is NP-Complete

The proof of the Cook-Levin Theorem is highly technical and well beyond the scope of our course,
and in general it would be extremely difficult to prove that any problem is NP-complete directly
from the definition. Fortunately, due to how the NP-complete complexity class is defined, once it
is known that one problem is NP-complete it is much easier to prove that another is.

Theorem 3.2. For any NP-complete problem A and any NP problem B, if A is reducible to B in
polynomial time (A ≤P B), then B is NP-complete.

This follows because the NP-completeness of A implies that any problem C ∈ NP is reducible
to A, and since A is reducible to B, such C is also reducible to B (by transitivity). Since B is NP,
and since any C ∈ NP is reducible to B, this shows that B is by definition NP-complete.

5

With this in mind, the NP-completeness of one problem A can be used to prove the NP-
completeness of another problem B by applying the following approach:

1. Prove that B ∈ NP. This requires explaining how a “yes” instance of B can be verified in
polynomial time given a solution. (This step is usually fairly trivial and requires minimal
explanation.)

2. Prove that some known NP-complete problem A can be reduced in polynomial time to B.
This requires explaining how to solve an arbitrary instance of A using a black box solver for B
plus a polynomial number of extra steps.

In practice, this generally consists of translating an instance of A into an analogous instance
of B such that the two have equivalent decision results (both “yes” or both “no”).

The Cook-Levin Theorem established that the SAT problem is NP-complete, and the above
method was then applied to grow a “tree” of additional known NP-complete problems which could
then be used to prove the NP-completeness of even more problems. The method was first used in
a 1972 paper by Richard Karp [4], which established the NP-completeness of a set of 21 known
hard problems from various branches of Discrete Mathematics, and are now known as Karp’s 21
NP-complete problems. Some of these are listed in Section 3.2.

Another interesting implication of the definition of NP-completeness is that all NP-complete
problems are reducible to each other in polynomial time, which makes them all in some sense
“equally hard”. It would also mean that finding a polynomial time algorithm for one NP-complete
problem would provide a polynomial time algorithm for solving all NP-complete problems, and
would thus establish that P = NP.

3.2 Some Common NP-Complete Problems

Many common problems from a diverse array of fields in Discrete Mathematics have been shown to
be NP-complete, and today there are hundreds of known NP-complete problems. It is useful to have
a library of some common NP-complete problems for use in proving that others are NP-complete.
Some are listed below.

� Boolean Satisfiability (SAT): SAT was the first ever problem proved to be NP-complete
(thus establishing the Cook-Levin Theorem). It concerns a boolean formula consisting of some
number of boolean (0/1, or true/false) variables x1, . . . , xn combined using some number of
boolean operations (∨OR, ∧ AND, and ¬ NOT) and parentheses for grouping. For example, ϕ
defined by

ϕ(x1, x2, x3, x4) =
(
(x1 ∨ x2) ∨ ¬(¬x1 ∧ x3) ∨ x4

)
∧ ¬x2

is a boolean formula on 4 variables. A satisfying assignment for a formula is an assignment of
truth values to all variables such that the overall expression evaluates to 1 (true). A formula
is called satisfiable if it has a satisfying assignment. Given any boolean formula ϕ, the SAT
problem consists of deciding whether ϕ is satisfiable.

For example, the formula ϕ defined above has a satisfying assignment (0, 0, 1, 1) since

ϕ(0, 0, 1, 1) =
(
(0 ∨ 0) ∨ ¬(¬0 ∧ 1) ∨ 1

)
∧ ¬0 = (0 ∨ ¬1 ∨ 1) ∧ 1 = 1 ∧ 1 = 1

but the formula ψ defined by

ψ(x1, x2) = ¬x1 ∧ ¬x2 ∧ (x1 ∨ x2)

has no satisfying assignment, evaluating to 0 no matter what x1 and x2 are.

6

� Boolean 3-Conjunctive Normal Form Satisfiability (3-SAT): 3-SAT is the special case
of SAT for which the boolean formula ϕ consists of a conjunction (AND) of clauses, each of
which consists of a disjunction (OR) of exactly 3 literals (variables or their negations). For
example,

ϕ(x1, x2, x3, x4) = (x1 ∨ ¬x1 ∨ ¬x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4)

Here, the first clause is x1 ∨ ¬x1 ∨ ¬x2, consisting of a disjunction of three literals: x1,
¬x1, and ¬x2. A boolean formula with this structure is said to be in 3-conjunctive normal
form (3-CNF). The 3-SAT problem consists of deciding whether a 3-CNF boolean formula is
satisfiable.

Given the restrictive structure of 3-SAT, it seems like the problem would be easier to solve than
the more general problem SAT, but both are NP-complete, shown because any general boolean
formula can be transformed into an equivalent 3-CNF formula. In practice, 3-SAT is an
extremely important NP-complete problem because it is used in many other NP-completeness
proofs.

� Zero-One Integer Programming (ZOIP): A common type of problem in mathematical
optimization is the linear program, which consists of attempting to minimize a linear objective
function subject to a set of linear inequality constraints. The constraint set for any linear
program can be written in the form

Ax ≤ b

for a given variable vector x ∈ Rn, requirement vector b ∈ Rm, and constraint matrix
A ∈ Rm×n, in which case the program has n variables and m constraints. A zero-one in-
teger program is a linear program for which all variables are required to take binary values
x ∈ {0, 1}n. The ZOIP problem consists of deciding whether a given zero-one integer pro-
gram has any feasible solutions, i.e. whether there are any binary vectors that satisfy all m
inequality constraints.

� Hamiltonian Cycle (HAM-CYCLE): Given a graph G = (V,E), the HAM-CYCLE
problem consists of deciding whether G contains a Hamiltonian cycle (a simple cycle that
includes every vertex).

� Clique: Given a graph G = (V,E) and a number k, the CLIQUE problem consists of deciding
whether G contains a clique of size k or greater (see 3.3.1).

� 3-Colorability (3-COLOR): Given a graph G = (V,E), the 3-COLOR problem consists of
deciding whether G is 3-colorable.

� Vertex Cover: Given a graph G = (V,E) and a number k, the VERTEX-COVER problem
consists of deciding whether G has a vertex cover (a set Q ⊆ V of vertices such that each
edge in E has at least one endpoint in Q) of size k or less (see 3.3.3).

� Traveling Salesman Problem (TSP): Given a weighted complete graph G = (V,E) and
a number k, TSP consists of deciding whether G has a Hamiltonian cycle of weight k or less.

� Subset Sum: Given a set S of numbers and a target value t, the SUBSET-SUM problem
consists of deciding whether there is a subset of S whose sum is exactly t.

� Set Cover: Given a ground set X, a collection of subsets S1, . . . , Sn of X, and a number k,
the SET-COVER problem consists of deciding whether there is a collection of k or fewer of
the subsets S1, . . . , Sn whose union is X.

7

3.3 Example NP-Completeness Proofs

The following examples illustrate the method for proving that a problem is NP-complete by applying
the two-step method described in Section 3.1 (showing that the problem is in NP, then showing
that a known NP-complete problem can be reduced to it).

3.3.1 Clique

We will show that CLIQUE is NP-complete by showing that it is NP, and that it is reducible in
polynomial time to the NP-complete problem 3-SAT. For reference:

� CLIQUE: Given a graph G = (V,E) and a number k, decide whether G has a clique of size k
or greater.

� 3-SAT: Given a boolean formula ϕ in 3-conjunctive normal form (a conjunction of clauses,
each consisting of a disjunction of 3 literals), decide whether ϕ has a satisfying assignment.

Proof. We first show that CLIQUE ∈ NP. Given an instance of CLIQUE with graph G and
number k, an affirmative result can be verified using the clique S, itself. It can be verified in
polynomial time that S has cardinality at least k and that all of its vertices are pairwise adjacent.

We next show that 3-SAT ≤P CLIQUE. Consider an instance of 3-SAT with a boolean formula ϕ
with r clauses. We will define a corresponding instance of CLIQUE by constructing a graph G based
on ϕ, and by searching for cliques of size at least r. Define a vertex in G for each literal in ϕ, and
define an edge between vertices whose corresponding literals (a) belong to different clauses and
(b) are not logical negations of each other (i.e. not between xi and ¬xi). See Figure 3.1 for an
example. Clearly such G can be constructed in polynomial time.

Figure 3.1: The graph G corresponding to the boolean formula ϕ(x1, x2, x3) = (¬x1 ∨ x2 ∨ x3) ∧
(x1 ∨ ¬x2 ∨ ¬x3) ∧ (x1 ∨ x2 ∨ x3). An example satisfying argument is (x1, x2, x3) = (0, 0, 1), which
corresponds to a clique of size 3 consisting of the ¬x1 = 1 from the left set, the ¬x2 = 1 from the
top set, and the x3 = 1 from the right set.

We claim that ϕ is satisfiable if and only if G has a clique of size r or greater. To show this,
first suppose ϕ has a satisfying argument. This requires that at least one literal in each clause be
assigned 1. Let S be a set of vertices in G containing one vertex from each clause corresponding
to one of the literals from that clause assigned 1. All vertices in S must be pairwise adjacent since
all correspond to different clauses and none can correspond to a literal and its own negation (since
we assume a satisfying argument), therefore S is a clique of size r.

Next, suppose G has a clique S of size r. There are no edges between vertices corresponding to
the same clause, so all r vertices must correspond to different clauses. Then assigning a 1 to each

8

literal in S produces a satisfying argument of ϕ since it results in at least one 1 in each clause, and
since the clique cannot contain any literal and its own negation.

This shows that 3-SAT is reducible in polynomial time to CLIQUE, and since 3-SAT is NP-
complete, we conclude that CLIQUE is also NP-complete.

3.3.2 Independent Set

We will show that INDEPENDENT-SET is NP-complete using a reduction from CLIQUE. For
reference:

� INDEPENDENT-SET: Given a graph G = (V,E) and a number k, decide whether G has
an independent set of size k or greater.

Proof. We first show that INDEPENDENT-SET ∈ NP. Given an instance of INDEPENDENT-
SET with graph G and number k, an affirmative result can be verified using the independent set S,
itself. It can be verified in polynomial time that S has cardinality at least k and that none of its
vertices are adjacent.

We next show that CLIQUE ≤P INDEPENDENT-SET. Consider an instance of CLIQUE with
graph G = (V,E) and number k. We will construct a corresponding instance of INDEPENDENT-
SET using the complement G of G and using the same number k. This complement can clearly be
constructed in polynomial time.

A set S ⊆ V is a clique in G if and only if it is an independent set in G (since pairwise
adjacent vertices in G become pairwise nonadjacent in G), therefore G has an independent set of
size k if and only if G has a clique of size k. Then CLIQUE is reducible in polynomial time to
INDEPENDENT-SET, and since CLIQUE is NP-complete, we conclude that INDEPENDENT-
SET is also NP-complete.

3.3.3 Vertex Cover

We will show that VERTEX-COVER is NP-complete using a reduction from CLIQUE. For refer-
ence:

� VERTEX-COVER: Given a graph G = (V,E) and a number k, decide whether G has a
vertex cover (a set Q ⊆ V of vertices such that each edge in E has at least one endpoint in Q)
of size k or greater.

Proof. We first show that VERTEX-COVER ∈ NP. Given an instance of VERTEX-COVER with
graph G and number k, an affirmative result can be verified in polynomial time using the vertex
cover Q, itself. It can be verified in polynomial time that Q has cardinality at most k and that
every edge in E has at least one endpoint in Q.

We next show that CLIQUE ≤P VERTEX-COVER. Given an instance of CLIQUE with
graph G = (V,E) and number k, construct a corresponding instance of VERTEX-COVER on the
complement G of G with number |V |−k. The complement can clearly be constructed in polynomial
time. We claim that G contains a clique of size k or more if and only if G contains a vertex cover
of size |V | − k or less.

Suppose G contains a clique S of size |S| = k. We claim that V \ S is a vertex cover of G. To
show this, for any edge {u, v} ∈ E(G), it must be the case that u and v are not adjacent in G, and
thus at most one out of u and v is in the clique S. This implies that at least one out of u and v is
in V \ S, and thus V \ S is a vertex cover of G of size |V | − |S| = |V | − k.

9

Next, suppose G contains a vertex cover T of size |T | = |V |−k. We claim that V \T is a clique
in G. To show this, for any edge {u, v} ∈ E(G), it must be the case that at least one out of u and v
is in T . This is equivalent to saying that, for any u, v /∈ T , there cannot be an edge {u, v} in E(G),
in which case {u, v} is an edge in E(G). This means that all elements of V \T are pairwise adjacent
in G, making V \ T a clique in G of size |V | − |T | = |V | − (|V | − k) = k.

This shows that CLIQUE is reducible in polynomial time to VERTEX-COVER, and since
CLIQUE is NP-complete, we conclude that VERTEX-COVER is also NP-complete.

3.3.4 4-Colorability

We will show that 4-COLOR is NP-complete using a reduction from 3-COLOR.

Proof. We first show that 4-COLOR ∈ NP, which is straightforward, since a 4-coloring can be
verified to be a proper coloring in polynomial time by checking the colors of both endpoints of each
edge.

We next show that 3-COLOR ≤P 4-COLOR. Consider an instance of 3-COLOR with a graphG.
Define a new graph G′ by starting with G and adding one vertex v adjacent to all other u ∈ V (G).
Such G′ can clearly be constructed in polynomial time.

Because v is adjacent to all other vertices in G′, any proper coloring of G′ must assign a unique
color to v. Then if G′ is 4-colorable, one color must be used for v with the remaining 3 colors
being used for V (G), which implies that G is 3-colorable. On the other hand, if G is 3-colorable
then G′ is certainly 4-colorable, since 3 colors can be used for V (G) leaving a fourth color for v.
We conclude that G′ is 4-colorable if and only if G is 3-colorable.

Then 3-COLOR is reducible in polynomial time to 4-COLOR, and since 3-COLOR is NP-
complete, we conclude that 4-COLOR is also NP-complete.

This argument can be extended in a straightforward way (e.g. using induction) to show that it
is NP-complete to decide whether a graph is k-colorable for any k ≥ 3.

3.3.5 Hamiltonian Path

We will show that HAM-PATH NP-complete using a reduction from HAM-CYCLE. For reference:

� HAM-PATH: Given a graph G = (V,E), decide whether G has a Hamiltonian path (a
simple path that includes every vertex in V).

� HAM-CYCLE: Given a graph G = (V,E), decide whether G has a Hamiltonian cycle (a
simple cycle that includes every vertex in V).

Proof. First, we show that HAM-PATH is NP. Given a graph G that contains a Hamiltonian path,
the result can be verified in polynomial time by simply verifying that the path is simple and that
it includes every vertex.

We next show that HAM-CYCLE ≤P HAM-PATH. Consider an instance of HAM-CYCLE on
a graph G. Define a new graph G′ from G by choosing any vertex v ∈ V (G) and dividing it into
two vertices v and v′, both with neighbor set NG(v). Then add two more vertices s, adjacent to
only v, and t, adjacent to only v′. Such G′ can clearly be constructed in polynomial time. We claim
that G contains a Hamiltonian cycle if and only if G′ contains a Hamiltonian path.

Suppose G contains a Hamiltonian cycle C. Then G′ contains a Hamiltonian path, consisting
of the path from s to v, around the part of C that includes every vertex in V (G) except v, then

10

to v′ (which must be possible since v′ has the same neighbors in G as v has), and finally to t. This
is a valid Hamiltonian path since every vertex in V (G′) is used exactly once.

Next suppose G′ contains a Hamiltonian path P from s to t. Then G contains a Hamiltonian
cycle, consisting of the part of P beginning at v and ending at the predecessor of v′, and then from
that predecessor to v, thus closing the cycle. This is a valid Hamiltonian cycle since every vertex
in V (G) (which does not include v′, s, or t) is used exactly once.

We conclude that G contains a Hamiltonian cycle if and only if G′ contains a Hamiltonian path.
Then HAM-CYCLE is reducible in polynomial time to HAM-PATH, and since HAM-CYCLE is
NP-complete, we conclude that HAM-PATH is also NP-complete.

3.3.6 Spanning Tree with Constrained Leaves

Consider a decision problem called TREE-LEAVES for which we are given a graph G = (V,E) and
a subset S ⊆ V of vertices, and asked to determine whether G has a spanning tree whose leaves
are exactly the set S. We can show that this is NP-complete using a reduction from HAM-PATH.

Proof. We first show that TREE-LEAVES ∈ NP. Given an instance of TREE-LEAVES with
graph G and set S, an affirmative result can be verified using the spanning tree T , itself. It can be
verified in polynomial time that T is a spanning tree of S and that its leaves (its degree-1 vertices)
exactly correspond to the set S.

We next show that HAM-PATH ≤P TREE-LEAVES. Consider an instance of HAM-PATH with
graph G = (V,E), and note that a Hamiltonian path is equivalent to a spanning tree with exactly
two leaves. Therefore G has a Hamiltonian path if and only if there is a pair of vertices u, v ∈ V
such that G has a spanning tree whose leaves are S = {u, v}. There are

(|V |
2

)
= 1

2 |V |2 + 1
2 |V | pairs

of vertices in G that could serve as the endpoints of a potential Hamiltonian path. In the worst
case all of them would need to be checked, but the number of pairs to check is only polynomial
in |V |.

We will define a solution algorithm for HAM-PATH as follows: Loop through every one of
the

(|V |
2

)
pairs of vertices u, v ∈ V . For each pair, construct an instance of TREE-LEAVES with

graph G and leaf set S = {u, v}, and solve the TREE-LEAVES problem. If there is a spanning
tree of G with leaves {u, v}, then there is a Hamiltonian path in G. Otherwise, if all pairs u, v ∈ V
are exhausted and none yielded a spanning tree, then G has no Hamiltonian path.

This shows that HAM-PATH is reducible in polynomial time to a polynomial number of TREE-
LEAVES instances, and since HAM-PATH is NP-complete, we conclude that TREE-LEAVES is
also NP-complete.

Note that the structure of this proof is slightly different than some of the previous proofs,
since the HAM-PATH problem was not reducible to just a single instance of TREE-LEAVES,
but rather a collection of different TREE-LEAVES instances with different sets S. However, as
long as the number of these instances is polynomial, we still have a polynomial time reduction
from HAM-PATH to TREE-LEAVES and the conclusions still hold. The logic goes that being
able to solve a polynomial number of TREE-LEAVES instances, each in polynomial time, would
imply that HAM-PATH is solvable in polynomial time, which would contradict HAM-PATH being
NP-complete (unless P = NP).

11

References

[1] S. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proceedings
of the third Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.
doi: 10.1145/800157.805047.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, Cambridge, MA, London, England, 3rd edition, 2009. ISBN 978-0-262-03384-8.

[3] R. Johnsonbaugh. Discrete Mathematics. Pearson, 8th edition, 2023. ISBN 9780137848577.
URL https://www.pearson.com/en-us/subject-catalog/p/discrete-mathematics/

P200000006219.

[4] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher, and
J. D. Bohlinger, editors, Complexity of Computer Computations, The IBM Research Symposia
Series. Springer, Boston, MA, 1972. doi: 10.1007/978-1-4684-2001-2 9.

[5] L. Levin. Universal sequential search problems. Problems of Information Transmission, 9(3):
265–266, 1973.

12

https://doi.org/10.1145/800157.805047
https://www.pearson.com/en-us/subject-catalog/p/discrete-mathematics/P200000006219
https://www.pearson.com/en-us/subject-catalog/p/discrete-mathematics/P200000006219
https://doi.org/10.1007/978-1-4684-2001-2_9

	Preliminaries
	Polynomial Time
	Polynomial Time Reduction

	NP-Completeness
	Proving NP-Completeness
	How to Prove a Problem is NP-Complete
	Some Common NP-Complete Problems
	Example NP-Completeness Proofs
	Clique
	Independent Set
	Vertex Cover
	4-Colorability
	Hamiltonian Path
	Spanning Tree with Constrained Leaves

