Spring 2025

Graph Basics

- G = (V, E) graph G with vertex set V and edge set E
- V(G) vertex set of graph G
- E(G) edge set of graph G
- d(v) degree (number of incident edges) of vertex v in an undirected graph
- $d^+(v), d^-(v)$ out/in-degree of vertex v in a directed graph, respectively
- N(v) neighborhood (set of adjacent vertices) of vertex v in an undirected graph
- $N^+(v), N^-(v)$ out/in-neighborhood of vertex v in a directed graph, respectively

Specific Types of Graph and Graph Operations

- K_n complete graph on n vertices
- $K_{m,n}$ complete bipartite graph on m and n vertices
- P_n path with n vertices
- C_n cycle with n vertices
- $Q_k k$ -dimensional hypercube
- \overline{G} complement of graph G
- G^* dual of planar graph G
- $G \lor H$ Join of graphs G and H
- $G \square H$ Cartesian product of graphs G and H
- $G \cong H$ graph G is isomorphic to graph H

Graph Properties

- $\Delta(G)$ maximum degree of undirected graph G
- $\Delta^+(G), \Delta^-(G)$ maximum out/in-degree of directed graph G, respectively
- $\delta(G)$ minimum degree of undirected graph G
- $\delta^+(G), \delta^-(G)$ minimum out/in-degree of directed graph G, respectively
- $\alpha(G)$ independence number (size of largest independent set) of graph G
- $\alpha'(G)$ size of maximum matching (set of disjoint edges) in graph G
- $\omega(G)$ clique number (size of largest clique) of graph G
- $\chi(G)$ chromatic number (minimum number of colors needed in a proper coloring) of graph G
- $\chi'(G)$ edge chromatic number of graph G