
Special Topics in Directed Graphs

MAD 3105: Discrete Mathematics II
Spring 2025

Adam Rumpf*

As with out earlier initial coverage of bipartite graphs, some of the material we will cover
in the course is not included in the main textbook [3] and will thus be supplemented by lecture
notes. Several of the topics to be covered in Unit 2 are applications of directed graphs, particularly
applications related to network flows problems. Some basic definitions related to directed graphs
can be found in our earlier notes and in Combinatorics, by Joy Morris [5], but these notes will
discuss some specialized topics not found in our main textbook.

1 Directed Graph Basics

A directed graph (a.k.a. digraph, network) has edges associated with ordered pairs of ver-
tices, (u, v), as opposed to an undirected graph (a.k.a. just a graph), which has edges associated
with unordered pairs of vertices {u, v}. Directed graphs are typically used to represent one-way
relationships, and they are usually displayed by drawing edges as arrows to indicate the direction
of the relationship (see Figure 1.1). The vertices of a directed graph are sometimes called nodes,
while their directed edges are called arcs. The beginning of a directed edge is called its tail
(a.k.a. predecessor), while the end is called its head (a.k.a. successor).

Figure 1.1: An example directed graph G = (V,E) with vertex set V = {a, b, c, d, e} and directed
edge set E =

{
(b, a), (b, d), (c, b), (c, d), (d, c), (e, b), (e, d)

}
.

Because each node can have both incoming and outgoing arcs, concepts like degree and neighbor
can be generalized to distinguish between the two. The out-neighborhood of a vertex v ∈ V
in a directed graph, denoted N+(v), is the set of successors of v. The in-neighborhood of v,
denoted N−(v), is the set of predecessors of v. The outdegree of a vertex v in a directed graph,

*Florida Polytechnic University, Department of Applied Mathematics, arumpf@floridapoly.edu

mailto:arumpf@floridapoly.edu
https://creativecommons.org/licenses/by-sa/4.0/


denoted d+(v), is the number of directed edges that exit v, while the indegree, d−(v), is the number
of edges that enter v. The maximum and minimum indegree and outdegree of a directed graph
are defined in the obvious way as

∆+(G) := max
v∈V

d+(v) δ+(G) := min
v∈V

d+(v)

∆−(G) := max
v∈V

d−(v) δ−(G) := min
v∈V

d−(v)

The underlying graph of a directed graph is the graph obtained by converting all directed
edges into undirected edges. An orientation of an undirected graph is a directed graph obtained
by converting all undirected edges into oriented edges. Because each edge can be oriented in two
ways, an undirected graph generally has many possible orientations (see Figure 1.2).

Figure 1.2: A directed graph (left) and its underlying graph (right), or equivalently an undirected
graph (right) and one of its possible orientations (left).

Many results for undirected graphs generalize in a straightforward way for directed graphs.
Some of these results that we’ve seen in class include the following.

Theorem 1.1 (Degree Sum Formula for Digraphs). The sum of indegrees of all vertices
and the sum of outdegrees of all vertices in a digraph G = (V,E) both equal the number of edges
in G, i.e. ∑

v∈V
d+(v) =

∑
v∈V

d−(v) = |E|

Lemma 1.2. If δ+(G) ≥ 1 (or equivalently if δ−(G) ≥ 1), then digraph G contains a directed
cycle.

Theorem 1.3 (Eulerian Digraph Characterization). A digraph is Eulerian if and only if it
has at most 1 nontrivial component and all vertices have equal indegree and outdegree.

2 Directed Acyclic Graphs

The following notes are primarily drawn from Discrete Mathematics, by Dossey et al. [2], with some
technical details and proofs drawn from Network Flows, by Ahuja et al. [1].

In many applications of directed graphs, it is natural for the resulting graph model to be free
of cycles. This often occurs, for example, when using a digraph to represent dependency structures
or organizational charts. A directed acyclic graph (DAG) is a graph containing no directed
cycles. Note that a DAG prohibits only directed cycles; its underlying graph may still contain
cycles (e.g. the digraph is Figure 1.2 is a DAG).

2



DAGs possess many useful properties, and knowing that a directed graph is acyclic immediately
implies a lot of useful results. Among other things this includes having well-defined shortest and
longest paths that can both be found very efficiently. Most of these useful properties stem from
the fact that DAGs can be topologically ordered.

2.1 Topological Orderings

A topological ordering of a directed graph G = (V,E) is an ordering of its nodes (v1, v2, . . . , vn)
such that i < j for each arc (vi, vj) ∈ E. In short, it is an ordering of the nodes such that each
predecessor node appears earlier on the list than its successor node. We can see when a graph has
a topological ordering by arranging its vertices in that order from left to right, in which case all
arcs should point from left to right (see Figure 2.1).

Figure 2.1: The above graph has a topological ordering (e, a, d, c, b). We can see that this is a
topological ordering since each arcs points from left to right, with each predecessor earlier in the
ordering than its successor.

It can be readily seen that a topological ordering cannot exist if the graph contains a directed
cycle (see Figure 2.2), meaning that only DAGs have the potential to possess topological orderings.
Lacking directed cycles is also sufficient for a digraph to have a topological ordering, as shown by
the following algorithm [4].

Figure 2.2: A graph with a directed cycle, which has no topological ordering. Any permutation of
the nodes {a, b, c} results in a list with at least one back-arc since the final node in the sequence
must have an out-neighbor earlier in the sequence.

3



Topological Sorting Algorithm

1. Initialize L as an empty list and S as the set of all nodes v ∈ V with no incoming arcs.

2. While S ̸= ∅, do the following:

(a) Remove a node u from S and add it to the end of L.

(b) For each arc (u, v) ∈ E exiting node u:

i. Remove (u, v) from E.

ii. If v has no more incoming arcs, add v to S.

3. If any arcs remain in E, then no topological ordering exists.

Otherwise, return topological ordering L.

It can be proved that, if G has a topological ordering, this algorithm finds it.

Proof. Firstly, note that this algorithm is guaranteed to terminate after a finite number of iterations
of the main loop. Each iteration removes one node from S, and any node that exits S can never
re-enter it, so the main loop can last for at most |V | iterations.

To prove that L is a topological ordering, a node is only added to L after it has been in S,
which only occurs after all its predecessors (if any) have already been removed from S and placed
in L. Therefore no arc (u, v) ∈ E can have u appear later than v in L. If the algorithm terminates
after having processed all nodes in V , then L is a topological ordering of G.

If instead the algorithm terminates with some nontrivial component of G, say G′, left over, then
it must be the case that δ−(G′) ≥ 1 (otherwise there would be a node in G′ with no predecessors, in
which case that node would be in S and the algorithm would not have terminated). By Lemma 1.2,
this implies that G′ contains a directed cycle, and we observed earlier that directed cycles prohibit
topological orderings. Therefore the algorithm terminates with edges left over if and only if no
topological ordering exists.

This algorithm allows us to establish the following general result.

Proposition 2.1. G = (V,E) is a directed acyclic graph if and only if there is a topological
ordering of V .

The proof follows directly from the previous conclusions: if G is a DAG, then we can find a
topological ordering for it (using the above algorithm), and if G is not a DAG, then it has no
topological ordering.

2.2 PERT Charts and the Critical Path Method

An important application of DAGs arises in the field of project management. Suppose we wish to
complete a project that requires the completion of a number of smaller tasks, each of which has its
own expected time and list of requisite tasks. As a specific example, Table 2.1 shows a list of the
required tasks, prerequisites, and timings for completing a particular project.

Projects of this type can be analyzed using a general method called PERT: Program Evaluation
and Review Technique. The PERT method begins by generating a PERT chart, consisting of a
directed graph with a node for each milestone and an arc for each tasks connecting two milestones
(with the predecessor being a prerequisite for the successor), and with arc weights corresponding
to task completion times (see Figure 2.3). Note that the project is feasible if and only if its PERT

4



Task Prerequisites Time (days)

A (none) 3
B (none) 2
C A, B 2
D C 4
E C 3
F D, E 2
G C 3
H G 1
I F 5
J H, I 2
K J 10

Table 2.1: The tasks, prerequisite structure, and timings required to complete an example project.

Figure 2.3: The PERT chart for the project defined in Table 2.1. Each node corresponds to the
beginning of a task, plus an extra “end” node representing the completion of the entire project.
Arc weights correspond to the time for the project at the tail of the arc.

chart is acyclic, since a directed cycle of dependencies would make it impossible to begin a portion
of the project.

Some of the basic questions we may want to answer about this type of project include: How
long will the project take to complete? Which tasks are the most “important” in terms of their
effect on the overall project time? Assuming that tasks can be completed in parallel, both of these
questions can be answered using critical path analysis.

A critical path is a longest path in the PERT chart (see Figure 2.4). A task with multiple
prerequisites can only begin after all prerequisites have been completed, so a milestone in the PERT
chart can only be reached after all incoming paths have been traversed. As such, the earliest start
time for any given task is equal to the longest path length from any of its predecessors. It follows
that the total project time equals the total length of the longest path in the network, since this
represents the longest string of consecutive tasks that cannot be completed in parallel. It further
follows that minor changes to task timings only directly affect the total project time for tasks on a
critical path.

Longest paths (and therefore critical paths) can be found efficiently in DAGs, for example by
applying the following algorithm.

5



Figure 2.4: A PERT chart with a highlighted critical path. This represents the longest path in the
network, and its total length is the total project completion time.

Longest Path Algorithm

1. Arrange all nodes in V in topological order (v1, v2, . . . , vn).

2. For all v ∈ V , set L(v) = 0 and pred(v) = null.

3. For each node vi in topological order i = 1, 2, . . . , n, do the following:

(a) For each node vj ∈ N−(vi), do the following:

i. Test whether L(vj) + w(vj , vi) > L(vi).
If so, update L(vi) to L(vj) + w(vj , vi) and pred(vi) to vj .
Otherwise, leave L(vi) and pred(vi) alone.

4. Return the path lengths L(v) and predecessors pred(v) for all v ∈ V .

In short, this algorithm consists of searching the nodes in topological order. Each node v begins
with a label L(v) = 0 representing the tentative length of the longest path ending at v. When a
node is searched, we consider all its predecessors and update its label to be the maximum path
length possible via any predecessor. On termination, L(v) equals the length of the longest path
ending at v for all v ∈ V , and in a PERT chart the label of the final node corresponds to the total
project time (see Figure 2.5).

Figure 2.5: A PERT chart with earliest start times recorded next to each node. These times
represent the lengths of the longest paths ending at each node, each of which is dictated by the
maximum time via any predecessor task.

6



3 Strong Connectivity

The following notes are drawn primarily from Introduction to Graph Theory, by Douglas West [8],
with applications and implementation details drawn from Graph Theory and its Applications to
Problems of Society, by Fred Roberts [7].

We’ve previously defined what it means for a graph to be connected, namely that there exist
a path between every pair of vertices. In a digraph, we also need to take directions of paths into
account. More precisely, a digraph G = (V,E) is called strongly connected if there is a directed
path from every node u ∈ V to every other node v ∈ V . It is weakly connected if its underlying
graph is connected (see Figure 3.1).

Figure 3.1: A digraph that is weakly connected but not strongly connected.

A strongly connected orientation (a.k.a. strong orientation) of an undirected graph G is
an orientation of its edges such that the resulting digraph is strongly connected. The topic of strong
orientations was originally developed to study the one-way street problem, which asks whether it
is possible for a given road network to be given a one-way assignment for every street such that
every location can still be reached from every other location. For some graphs a strong orientation
is possible, but for others it is not (see Figure 3.2).

Figure 3.2: The graph on the left has a strong orientation, e.g. by orienting the inner and outer
squares as directed cycles and alternating the diagonal edges between pointing towards or away
from the inner cycle. The graph on the right cannot have a strong orientation due to the cut-edge
bridging two components, since either choice of orientation leaves one part of the graph unreachable
from the other.

It can immediately be seen that there are two necessary conditions for G to have a strong
orientation: G must be connected (weak connectivity is required for strong connectivity) and it
cannot have any cut-edges (since either orientation for a cut-edge leaves one part of the graph
inaccessible from the other). Surprisingly this necessary condition also turns out to be sufficient,
and this characterization for strong orientations is given by the following.

Theorem 3.1 (Robbins’ Theorem). A graph G has a strong orientation if and only if it is
connected and has no cut-edges.

7



The forward implication is obvious from the above observations, but the reverse implication is
challenging to show directly. In order to prove Robbins’ Theorem we need to introduce the ideas
of ears and ear decompositions.

An ear of G is a subgraph P ⊆ G consisting of a path that is part of a cycle, whose internal
vertices all have degree 2 in G, and which is maximal with respect to the previous properties. The
path may be closed, in which case the ear may be a simple cycle. An ear decomposition of a
graph G is a partition of G into edge-disjoint subgraphs P0, P1, . . . , Pk such that P0 is a simple
cycle and, for all i = 1, 2, . . . , k, Pi is an ear of the subgraph P0 ∪ P1 ∪ · · · ∪ Pi (see Figure 3.3).

Figure 3.3: (Left) A graph with an ear highlighted. It is a path subgraph, it is part of a cycle, its
internal vertices all have degree 2, and it is maximal in the sense that it cannot be extended while
maintaining all of these properties. (Right) An ear decomposition of a graph. Colors represent the
different ears in the decomposition, in the order: P0, P1, P2, P3, P4.

Ears and ear decompositions were originally defined in Herbert Robbins’ 1939 paper studying
the one-way street problem [6], though they have found uses in other areas of discrete mathematics
since then. To prove Robbins’ Theorem we will actually show the stronger result that the following
three statements about an undirected graph G are equivalent:

(a) G has a strong orientation.

(b) G is connected and has no cut-edges.

(c) G has an ear decomposition.

The proof will consist of three parts: showing that (a) implies (b), that (b) implies (c), and
that (c) implies (a), which will prove that all three conditions are equivalent.

Lemma 3.2. If G has a strong orientation, then it is connected and has no cut-edges.

Proof. We will show the contrapositive of this statement: if G is disconnected or has a cut-edge,
then it cannot have a strong orientation. First, suppose G is disconnected. Weak connectivity is
required for strong connectivity, so G cannot have a strong orientation.

Next, suppose G has a cut-edge {u, v} ∈ E(G). Orienting the arc from u to v produces a
directed path from u to v, but there cannot be a path from v to u since this would require a path
from v to u not involving the edge {u, v}. An edge is a cut-edge if and only if it is not part of any
cycle, so there cannot be any alternate paths from v to u, and thus orienting {u, v} from u to v
does not yield a strong orientation. By symmetry orienting from v to u also does not yield a strong
orientation, thus no strong orientation of G exists.

Next, to prove that (c) implies (a) requires first establishing a proposition.

8



Proposition 3.3. Adding an ear to a graph with a strong orientation yields a larger graph with
a strong orientation.1

Proof.

With this proposition in place, we can prove the necessary lemma.

Lemma 3.4. If G has an ear decomposition, then it has a strong orientation.2

Proof.

Finally, we can prove that (b) implies (c) to complete the implications.

Lemma 3.5. If G is connected and has no cut-edges, then it has an ear decomposition.

We will prove this algorithmically, by showing that the following procedure produces an ear
decomposition (assuming G is connected and has no cut-edges). Throughout the following discus-
sion, let Gi = P0 ∪ P1 ∪ · · · ∪ Pi be the subgraph of G consisting of the first i ears (plus the initial
cycle) in the ear decomposition.

Ear Decomposition Algorithm

1. Define G0 = P0 as any cycle in G.

2. Repeat the following for i = 1, 2, . . . until Gi = G:

(a) Find an edge {u, v} ∈ E(G) \ E(Gi) such that u ∈ V (Gi).

(b) {u, v} must be part of a cycle C in G. Define Pi+1 as the part of C traversed in
following C starting at u until returning to Gi.

3. Return P0, P1, . . . , Pk as the components of an ear decomposition of G.

1Proof redacted due to homework.
2See footnote 1.

9



To prove Lemma 3.5, we will prove that this algorithm is well-defined, that it terminates in
finite time, and that it produces an ear decomposition of G.

Proof. First, note that the initialization of the algorithm is well-defined. G being connected and
lacking cut-edges implies that every edge e ∈ E(G) is part of a cycle, so there must exist some
cycle to choose as P0.

Next, note that the main loop is well-defined. If the algorithm has not yet terminated, then
there must exist some edges in E(G) \ E(Gi), and since G is connected, at least one of these
edges must have an endpoint in Gi, therefore it is always possible to choose an uncaptured edge
{u, v} ∈ E(G) \ E(Gi) such that u ∈ V (Gi). Further, since {u, v} is not a cut-edge, it is part of a
cycle, and this cycle can be followed through the edges in E(G) \E(Gi) until returning to a vertex
in V (Gi).

Finally, each iteration of the main loop adds an ear with at least 1 edge to the decomposition,
and so it must terminate after at most |E(G)| iterations. The previous arguments show that, until
the decomposition encompasses all of G, another iteration will still be possible, so it can only
terminate when Gi = G.

Lemmas 3.2, 3.4, and 3.5, together, prove Robbins’ Theorem. While the initial statement of
Theorem 3.1 answers the question of when it is possible to orient all edges in a graph to yield a
strongly connected digraph, many practical instances of graph orientation problems only require
some edges in the graph to be oriented. For example, given a graph G, we might want to know
whether it is possible to orient just one edge while still leaving a directed path between every pair
of vertices. This could be useful, for example, to determine whether one lane of a street can be
closed for repairs. It’s not to hard to see that the characterization for this property is identical to
the characterization for strong orientations.

Observation 3.6. All edges in G can be oriented to yield a strongly connected digraph if and only
if any edge in G can be oriented to yield a strongly connected mixed graph.

This is because, as argued earlier, any orientation chosen for a cut-edge leaves part of the
graph unreachable from another part. Therefore if it is possible to orient any one edge in G to
yield a strongly connected mixed graph, G cannot contain any cut-edges, which is exactly the
characterization of G having a strong orientation.

Finally, we note an algorithm for producing strong orientations (when they exist) based on
depth-first search (DFS).

Strong Orientation Algorithm

1. Perform a DFS of G starting at any arbitrary node, and label the nodes 1, 2, . . . , n in order
of traversal.

2. For each edge in G that is part of the DFS tree, orient the edge from lower label to higher
label.

3. For each edge in G that is not part of the DFS tree, orient the edge from higher label to lower
label.

10



References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Upper Saddle River, NJ, 1993. ISBN 0-13-617549-X.

[2] J. A. Dossey, A. D. Otto, L. E. Spence, and C. Vanden Eynden. Discrete Mathematics. Pearson,
5th edition, 2006. ISBN 0-321-30515-9.

[3] R. Johnsonbaugh. Discrete Mathematics. Pearson, 8th edition, 2023. ISBN 9780137848577.
URL https://www.pearson.com/en-us/subject-catalog/p/discrete-mathematics/

P200000006219.

[4] A. B. Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558–562,
1962. doi: 10.1145/368996.369025.

[5] J. Morris. Combinatorics: an upper-level introductory course in enumeration, graph theory, and
design theory. version 2.1.1, 2023. URL https://www.cs.uleth.ca/~morris/Combinatorics/

html/frontmatter-1.html.

[6] H. E. Robbins. A theorem on graphs, with an application to a problem of traffic control. The
American Mathematical Monthly, 46(5):281–283, 1939. doi: 10.2307/2303897.

[7] F. S. Roberts. Graph Theory and Its Applications to Problems of Society. SIAM, Philadel-
phia, PA, 1978. ISBN 0-89871-026-X.

[8] D. B. West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ, 2nd edition,
2001. ISBN 0-13-014400-2.

11

https://www.pearson.com/en-us/subject-catalog/p/discrete-mathematics/P200000006219
https://www.pearson.com/en-us/subject-catalog/p/discrete-mathematics/P200000006219
https://doi.org/10.1145/368996.369025
https://www.cs.uleth.ca/~morris/Combinatorics/html/frontmatter-1.html
https://www.cs.uleth.ca/~morris/Combinatorics/html/frontmatter-1.html
https://doi.org/10.2307/2303897

	Directed Graph Basics
	Directed Acyclic Graphs
	Topological Orderings
	PERT Charts and the Critical Path Method

	Strong Connectivity

