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The following tables show methods for expressing a logical constraint in the form of an integer program (IP)
constraint. Integer variables are often used to model logical decisions, in which case constraints on these decisions
must be converted into (ideally linear) mathematical expressions. Most of the techniques listed here are adapted
from Bertsimas and Tsitsiklis 1997 [1].

In all examples below, x, y, and z will always represent variables, all other letters will always represent constants,
and bold typeface will be used to represent vectors.

Depdendency

Words x can only be true if y is true.

Symbols ¬y → ¬x

Formulation

x ≤ y

x, y ∈ {0, 1}

Explanation If y = 0, then the inequality forces x = 0. If y = 1, then no restrictions are placed on x.

Number of Choices

Words At most/at least/exactly n out of xj can be true.

Formulation ∑
j

xn ≤ n (at most n)

or
∑
j

xn ≥ n (at least n)

or
∑
j

xn = n (exactly n)

xj ∈ {0, 1} ∀j

Disjunctive Constraints

Words At least one out of aTx ≥ b and cTx ≥ d must be true, where a, c,x ≥ 0.

Symbols (aTx ≥ b) ∨ (cTx ≥ d)

Formulation

aTx ≥ yb

cTx ≥ (1− y)d

y ∈ {0, 1}
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Explanation We have introduced a binary decision variable y to choose whether to force the first or the second
inequality to be true. If y = 0, then the constraints reduce to

aTx ≥ 0

cTx ≥ d

Because a,x ≥ 0 the first constraint is always trivially true, and is thus meaningless, so we are actually just
enforcing cTx ≥ d. On the other hand, if y = 1, the constraints reduce to

aTx ≥ b

cTx ≥ 0

By the same logic, the second constraint is meaningless, so we are actually just enforcing aTx ≥ b. In either case
at least one must be true, and since y is free, it can be either of them.

Extensions This can be generalized to force at least k out of a total of m constraints of the form aTi x ≥ bi for
i = 1, . . . ,m to be true by introducing variables y1, . . . , ym and forcing at least k of them to be 1, as in

aTi x ≥ yibi i = 1, . . . ,m

m∑
i=1

yi ≥ k

yi ∈ {0, 1} i = 1, . . . ,m

Set Membership

Words x must take a value in the set {a1, . . . , am}.

Symbols x ∈ {a1, . . . , am}

Formulation

x =

m∑
i=1

yiai

m∑
i=1

yi = 1

yi ∈ {0, 1} i = 1, . . . ,m

Explanation A binary indicator variable yi is introduced for each set element ai to indicate whether x should be
equal to that set element. Setting the sum of all yi to be 1 forces exactly one of them to be 1 and the rest 0, in which
case the sum that defines x is simply 1ai for the chosen index i.

Implication

Words If aTx ≥ b, then cTx ≥ d.

Symbols (aTx ≥ b)→ (cTx ≥ d)
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Formulation

aTx−My < b

cTx+M(1− y) ≥ d

y ∈ {0, 1}

M � 0

Explanation This formulation makes use of the “big-M ” technique, where we introduce a constant M large enough
to dwarf any other quantity involved in this problem. As with the disjunctive constraint we have a binary indicator
y. If y = 0, then the first constraint becomes aTx < b while the second becomes cTx+M ≥ d. If M is sufficiently
large then the second constraint will be trivially true for any x, so this reduces to simply aTx < b, which is equivalent
to ¬(aTx ≥ b).

On the other hand, if y = 1 then the first constraint is aTx −M < b is trivially true for any x, which leaves us
with only the second constraint of cTx ≥ d. Combining these results for free y, we have ¬(aTx ≥ b) ∨ (cTx ≥ d),
which is logically equivalent to (aTx ≥ b)→ (cTx ≥ d).

Selectable Inequality Direction

Words Given p ∈ {0, 1}, p = 1 if and only if x < y.

Symbols (p = 1)↔ (x < y)

Formulation

x− y < M(1− p)

y − x ≤Mp

M � 0

Explanation This is a straightforward application of the big-M technique and the binary indicator p to select
whether to enforce x < y or x ≥ y.

Inequality

Words x must not equal y.

Symbols x 6= y

Formulation

x− y ≥ ε−Mz

x− y ≤ −ε+M(1− z)

z ∈ {0, 1}

0 < ε� 1

M � 0
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Explanation Here, M should be a very large constant and ε should be a very small positive constant. The
constraint actually being enforced here is actually that |x − y| > ε, which for a sufficiently small value of ε may be
close enough to x 6= y.
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