
Getting Started with CPLEX in C++

Illinois Institute of Technology
Department of Applied Mathematics

Adam Rumpf
arumpf@hawk.iit.edu

December 18, 2016

Contents

1 Introduction 1
1.1 Obtaining C++ . 1
1.2 Obtaining CPLEX . 1

2 Using CPLEX in C++ 2
2.1 Linking CPLEX to Visual Studio . 2
2.2 Building a Model . 3

3 Full Examples 10
3.1 Hard-Coding Constraints . 10
3.2 Automatically Generating Constraints . 12

I

1 Introduction

CPLEX is one of the most widely used solvers for linear programs and mixed-integer programs. It is used extensively
in the operations research community, both in academia and industry. Knowing how to use it effectively is an
invaluable skill for any applied mathematician.

The IBM ILOG CPLEX Optimization Studio distribution comes with an IDE for solving models, and it is
available as a solver in several popular computer algebra systems, notably AMPL. There is also an API that allows
it to be directly accessed through common programming languages, including Python, Java, C#, and C++.

Accessing CPLEX in this way offers several advantages: First of all, despite being easier to use, the free student
version of AMPL places restrictions on its problem sizes (currently to 500 variables and 500 constraints). There is
no such restriction when accessing CPLEX through the API. Second, it is often the case that solving a single LP or
MILP is only part of what needs to be done in an application. For example, we might want to apply a metaheuristic
that requires solving an LP in each iteration. Being able to call CPLEX from within a larger program allows for
much more flexibility in modeling applications.

This guide is meant to explain how to get started using CPLEX in C++, including how to obtain the necessary
programs and how to build a very simple model. It is by no means comprehensive. The best way to learn more
about this process is by practicing with your own examples, and by consulting the official documentation.

1.1 Obtaining C++

As one of the most widely used programming languages in the world, there are a great many IDEs available for C++.
For the purposes of this guide, we will be using Microsoft Visual Studio, which is available to students for free from
https://www.visualstudio.com/downloads/.

This guide will assume basic familiarity with the syntax and usage of C++. If you are new to C++, or you simply
need to review some topics, see http://www.cplusplus.com/ for comprehensive guides and documentation.

1.2 Obtaining CPLEX

The CPLEX optimizer is available through several common computer algebra systems. To access it through the
C++ API, however, we must download the standalone CPLEX package from IBM. It is available to IIT students for
free through the IBM Student Developer Community.

To download your copy, do the following:

1. Visit the IBM Student Developer Community at https://developer.ibm.com/students/

2. At the bottom of the page, fill in the information for IIT.

3. Follow the link that appears to the Illinois Institute of Technology WebStore, or follow the link to View
all software.

4. From the WebStore, navigate to Students > IBM > Data & Analytics > CPLEX.

5. Click the link to IBM ILOG CPLEX Optimization Studio – Student.

6. Add the program to your cart (it should be listed as free).

7. In order to check out and download the program, you will need to create an account with IBM developerWorks,
which requires providing your IIT email address.

After downloading and installing the program, you will have access to the IBM ILOG CPLEX Studio IDE, a
standalone program that can be used for building and solving LP and MILP models. The installation also includes
the files needed to access the CPLEX optimizer through other programs, which will be explained in the next section.

1

https://www.visualstudio.com/downloads/
http://www.cplusplus.com/
https://developer.ibm.com/students/

2 Using CPLEX in C++

This section will outline the process for how to use CPLEX in a Visual Studio C++ project, from the compiler
configuration to the code, itself. By this point both Visual Studio and CPLEX should be installed.

Special thanks to Daniel Simmons and Dr. Qipeng Phil Zheng1, and to Dr. Leandro C. Coelho2, whose guides
proved invaluable in figuring out the linking process for my own installations.

2.1 Linking CPLEX to Visual Studio

The CPLEX Studio download includes several libraries of classes that allow a C++ program to build and solve
models in CPLEX. In order to access these classes, we must first configure our compiler to read from these libraries.
The instructions below outline this process for my particular installations, which are:

Microsoft Visual Studio Community 2015
CPLEX 12.7.0
On my system, these were both installed to their default directories. If you choose to install them to a different

directory, some of the file paths shown below will need to be adjusted.

1. Open Visual Studio and start an empty project.

2. There are a few compiler settings built into the CPLEX libraries that need to be matched in our Visual Studio
project. For example, if we are using the 64-bit version of the CPLEX libraries, but the compiler is set to
32-bit mode, we will run into errors when we try to compile the code.

To fix this, from the main project window, navigate to Build > Configuration Manager. Make sure that
Active solution configuration is set to Release, and that Active solution platform is set to whatever
matches your CPLEX installation (for me, this is x64).

Note that changing these settings resets any changes made in the Property Pages window, so be sure to complete
this step before the rest.

3. Now we begin the process of actually linking CPLEX to Visual Studio. From the main project window, navigate
to Project > [project name] Properties (or press [Alt]+[F7]). This opens the Property Pages window.

From here, navigate to Configuration Properties > C/C++ > General. Edit the Additional Include
Directories field to include the file paths to the include folders in both the CPLEX and the CONCERT
directories, separated by a semicolon. For me, these are:

C:\Program Files\IBM\ILOG\CPLEX_Studio127\cplex\include;

C:\Program Files\IBM\ILOG\CPLEX_Studio127\concert\include

4. Still under C/C++ Properties, navigate to Preprocessor and add the following to the Preprocessor Defi-
nitions field:

WIN32;

_CONSOLE;

IL_STD

5. Still in the Property Pages window, navigate to Linker > General. Edit the Additional Library Direc-
tories field to include the stat_mda folders in both the CPLEX and the CONCERT directories, separated
by a semicolon. For me, these are:

1http://www.iems.ucf.edu/qzheng/grpmbr/seminar/Daniel_Using_C++_with_CPLEX.pdf
2http://www.leandro-coelho.com/how-to-configure-ms-visual-studio-to-use-ibm-cplex-concert/

2

http://www.iems.ucf.edu/qzheng/grpmbr/seminar/Daniel_Using_C++_with_CPLEX.pdf
http://www.leandro-coelho.com/how-to-configure-ms-visual-studio-to-use-ibm-cplex-concert/

C:\Program Files\IBM\ILOG\CPLEX_Studio127\cplex\lib\x64_windows_vs2015\stat_mda;

C:\Program Files\IBM\ILOG\CPLEX_Studio127\concert\lib\x64_windows_vs2015\stat_mda

6. Still under Linker, navigate to Input. Edit the Additional Dependencies field to contain the .lib files for
CPLEX (including your version number, which for me is 12.7.0), CONCERT, and ILOCPLEX, separated by
semicolons. For me, these are:

cplex1270.lib;

concert.lib;

ilocplex.lib

7. Click OK to apply these settings and close the Property Pages window. You should now be ready to start
using the CPLEX libraries in your C++ project.

2.2 Building a Model

In order to use CPLEX models in a C++ project, the following must be included in the preprocessor directives:

#include "ilcplex\cplex.h"

#include "ilcplex\ilocplex.h"

The CPLEX API for C++ takes advantage of the object-oriented nature of C++. The workflow for solving one
or more optimization problems revolves primarily around three types of objects: environments, models, and Cplex
objects (we will spell the C++ object as “Cplex” rather than “CPLEX” to avoid confusion between it and the CPLEX
solver).

• Environment objects manage the memory for model objects and algorithms. For our purposes, simply think
of them as containing the variable definitions (including each variables’ name, upper and lower bounds, and
data type). A single environment can be associated with several models that share the same set of variable
definitions.

• Model objects contain all objects necessary to define a problem, including variables, constraints, and objectives.
Each of these is its own type of object.

• Cplex objects extract information from model objects for use in an appropriate CPLEX solution algorithm.
They contain methods for setting aspects of the CPLEX algorithm, calling CPLEX to obtain a solution, and
exporting information about the solution.

All of the classes we will use begin with the prefix Ilo. Full documentation for all classes used in this section can be
found through the IBM Knowledge Center3. Also see the official guide4, which provides an extremely comprehensive
explanation of how to get started (see Chapter 4 for a series of C++ tutorials).

The basic workflow for solving a single problem through CPLEX is as follows:

1. Define an environment object.

2. Define a model object in this environment.

3. Add variables to the environment.

4. Add constraints and an objective to the model.
3http://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.0/kc_gen/ilog.odms.ide.help_toc-gen2.html
4https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.3/ilog.odms.studio.help/pdf/gscplex.pdf

3

http://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.0/kc_gen/ilog.odms.ide.help_toc-gen2.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.3/ilog.odms.studio.help/pdf/gscplex.pdf

5. Define a Cplex object.

6. Extract the model to CPLEX.

7. Solve the model.

8. Export any required information about the solution.

9. Close the environment.

We will now look at each major step in detail.

Defining an Environment and a Model

To create a new environment object, and an associated model object, use the following syntax:

IloEnv myenv;

IloModel mymodel(myenv);

IloEnv and IloModel are the classes for environments and models, respectively. The names myenv and
mymodel can be replaced with any valid name.

Adding Variables to the Environment

If there are few enough variables in the problem to name each individually, the simplest way to add them to the
environment is by using the IloNumVar class as follows:

IloNumVar myvar(env, lower, upper, type);

where

• myvar is the name of the variable.

• env is the environment object to which the variable belongs.

• lower and upper are numerical lower and upper bounds, respectively. If the variable is meant to be un-
bounded from above, use an upper bound of IloInfinity, and if unbounded from below, a lower bound of
-IloInfinity.

• type can be specified as ILOFLOAT, ILOINT, or ILOBOOL (all caps) to specify that the variable is continuous,
integer, or binary, respectively. The argument defaults to ILOFLOAT if excluded.

However, it is often the case that there are too many variables to reasonably define each individually. In this
case, we can use the IloNumVarArray class as follows:

IloNumVarArray myvar(env, n, lower, upper, type);

This time myvar will be treated as an array of n variables, all with the same environment, bounds, and type. Spe-
cific variables from this array are called as they would be in a standard C++ array (i.e. the first element is myvar[0],
the second is myvar[1], the third is myvar[2], and so on until reaching the final element myvar[n-1]).

The bounds of a variable can be changed using the IloNumVarArray::setBounds method as follows:

myvar[i].setBounds(lower, upper);

The above code will change the bounds of element i of variable array myvar to the specified limits.

4

Adding Constraints to the Model

Constraints are added using the IloModel::add method as follows:

model.add(constraint);

Here, constraint can be either an IloRange object (if a single constraint) or an IloRangeArray object (if
an array of constraints). For example, to enter an individual constraint, we can use the syntax:

model.add(IloRange(env, lower, expr, upper));

where

• model is the name of the model to which the constraint is being added.

• env is the environment to which model belongs.

• lower, expr, and upper define a constraint of the form lower ≤ expr ≤ upper, where lower and upper
are constants and expr is a linear combination of variables. If lower and upper have the same value, then
this represents an equality constraint. lower and upper can each be made infinite via IloInfinity. The
expr part of the constraint is an IloExpr object, and can be typed using the standard C++ syntax for
arithemtic (for example, 2*myvar[0] + myvar[1] - 4*myvar[2]).

For example, suppose we have already defined an environment called myenv, a model called mymodel, and an
array of variables of length 3 called x, and that we want to define a constraint of the form 2x1 + x2 − 4x3 ≥ 6. The
following code shows how to define this constraint.

mymodel.add(IloRange(myenv, 6, 2*x[0] + x[1] - 4*x[2], IloInfinity));

The following code achieves the same result.

mymodel.add(6 <= 2*x[0] + x[1] - 4*x[2]);

As with variables, it is often not possible to type each constraint individually. In this case, we can use loops in
our program to generate the constraints. This method is useful if the constraints are being read in from an external
file. There are many different ways of defining constraints automatically. The following method shows how to build
the constraints one row at a time:

1. Begin a for loop with one iteration for each constraint.

2. Within each iteration of this loop, do the following:

(a) Initialize an empty expression from the IloExpr class, given the current environment.

(b) Use whatever code is needed to add the correct variables with the correct coefficients to this expression
using the +, -, *, /, =, +=, -=, *=, and /= operators.

(c) Add the constraint to the model using the IloModel::add method on a new IloRange object with
the current loop’s IloExpr object.

(d) End the expression object to clear memory.

For example, suppose we have already defined an environment called myenv, a model called mymodel, and
an array of variables of length n called x. Suppose we want to solve a standard form LP subject to equality
constraints Ax = b, where A is an m × n matrix and b is a vector of length m, and each constraint takes the form
ai1x1 + ai2x2 + . . . + ainxn = bi for i = 1, 2, . . . ,m. Suppose that A, b, n, and m have all already been stored in
memory as a two-dimensional array A, a one-dimensional array b, and integers n and m (so A[i][j] in our code is
the (i + 1), (j + 1)-th element of A). Then we could use the following code to add all necessary constraints to the
model:

5

for (int i=0; i<m; i++)

{

// i = constraint number

IloExpr myexpr(myenv); // empty expression

for (int j=0; j<n; j++)

{

// j = variable number

myexpr += A[i][j] * x[j]; // add each variable with the correct coefficient

}

mymodel.add(IloRange(myenv, b[i], myexpr, b[i])); // add assembled constraint

myexpr.end(); // clear memory

}

For certain sparse problems (for example, network flows problems), it may be more efficient to simply specify all
nonzero coefficients instead of constructing constraints row-by-row. In this case, we begin by defining an empty array
of constraints from the IloRangeArray class. We can manipulate the coefficients of individual variables in each con-
straint using the IloRange::setLinearCoef method, and alter the bounds with the IloRange::setBounds
method.

To define an empty array of constraints, use the following:

IloRangeArray mycon(env);

where mycon is its name and env is the environment. This defines an empty array whose elements are all
IloRange objects. Individual constraints can be added using the IloRangeArray::add method as follows:

mycon.add(IloRange(env, lower, upper));

where lower and upper are the desired bounds. If several constraints all have the same set of bounds, we can
quickly add several at a time using:

mycon.add(n, IloRange(env, lower, upper));

This will add n constraints with the same set of bounds. After completing this process, we will have an array
of constraints with defined bounds but no variable coefficients. By not specifying an expression containing a linear
combination of variables, their coefficients are assumed to be zero, so the next step is to individually set the nonzero
coefficients. This is done using the IloRange::setLinearCoef method as follows:

mycon[i].setLinearCoef(var, coef);

where

• mycon is the name of the IloRangeArray object.

• i is the index of the constraint we wish to alter.

• var is the name of a variable.

• coef is the new coefficient to use for variable var in constraint number i.

Finally, we add the constraint array to the model using the IloModel::add method as usual.

6

Adding an Objective to the Model

Objectives are added to models in exactly the same way as constraints, using the IloModel::add method. The
syntax is:

model.add(objective);

where objective is either an IloMinimize or an IloMaximize object, depending on whether the problem
is minimization or maximization. The syntax for each is identical. To add a minimization objective to a model, we
can use the syntax:

model.add(IloMinimize(env, expr));

where

• model is the name of the model to which the constraint is being added.

• env is the environment to which model belongs.

• expr is an expression that defines the cost function. Its syntax is the same as that of the expr argument of
a constraint.

To make this a maximization, simply replace IloMinimize with IloMaximize. As with constraints, if the
objective is short enough, it may be entered explicitly. Otherwise, it can be generated by defining an IloExpr

object and constructing the objective term-by-term.
For example, suppose we have already defined an environment called myenv, a model called mymodel, and

variables x and y, and that we want to define a minimization objective with cost function x + 2y. Then we could
use the following:

mymodel.add(IloMinimize(myenv, x + 2*y));

Now suppose that instead of two variables we have n, stored in a variable array x, and that we want a cost
function of the form x1 + 2x2 + 3x3 + . . .+ nxn. Then we could use the following:

IloExpr myexpr(myenv); // empty expression

for (int i=0; i<n; i++)

myexpr += (i+1) * x[i];

mymodel.add(IloMinimize(myenv, myexpr));

myexpr.end(); // clear memory

As with the constraints, if the objective happens to be sparse, it may be easier to simply specify the nonzero
coefficients. To do so, we begin by defining an empty objective object from the IloObjective class, and then
use the IloObjective::setLinearCoef method to manipulate individual coefficients. Suppose we have already
defined an array of 100 variables x, but the objective is simply to maximize x1 + 4x10 − x50. Then we could use the
following:

IloObjective myobj = IloMaximize(myenv);

myobj.setLinearCoef(x[0], 1); // +x_1

myobj.setLinearCoef(x[9], 4); // +4x_10

myobj.setLinearCoef(x[49], -1); // -x_50

mymodel.add(myobj);

7

Extracting and Solving the Model

By this point, we should have an environment containing all desired variable definitions, and a model object containing
all desired constraints and the objective. The next step is to extract this model to the CPLEX solver to obtain a
solution, which can be done using an IloCplex object. To solve our model, we can use the IloCplex::extract
and IloCplex::solve methods as follows:

IloCplex mycplex(env);

mycplex.extract(model);

mycplex.solve();

where

• mycplex is the name of our Cplex object.

• model is the name of the model to which the constraint is being added.

• env is the environment to which model belongs.

After calling the solve method, the extracted model will be sent to the CPLEX solver, which will attempt to
find a solution. If running this program through the command line, the CPLEX solver’s output will be shown while
it looks for a solution. The method, itself, outputs a value of the IloBool data type with a value of IloTrue if
the problem was found to be feasible, and IloFalse otherwise. This output can be used in our program to decide
how to proceed.

Note that the IloCplex class contains a large number of methods for getting and setting the CPLEX solver
options, but these will not be discussed here. These settings become particularly important when dealing with
large-scale problems with integer constraints. For more information, see the documentation in the IBM Knowledge
Center5.

Exporting the Model Solution

After solving a model, information about the solution will be stored in the IloCplex object whose solve method
was called. To actually access this information, we can use the IloCplex::getStatus, IloCplex::getValue,
and IloCplex::getObjValue methods. To get the solution status, use:

cplex.getStatus()

This returns a string specifying one of the following:

• Optimal solution found.

• Feasible but not necessarily optimal solution found.

• Model known to be infeasible.

• Unknown whether any feasible solutions exist.

To get the value of an individual variable, use:

cplex.getValue(var)

where

• cplex is the name of our Cplex object.
5http://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.ide.help/refcppopl/html/classes/

IloCplex.html

8

http://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.ide.help/refcppopl/html/classes/IloCplex.html
http://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.ide.help/refcppopl/html/classes/IloCplex.html

• var is the name of the variable in question. If the variables were part of an array, the array index should be
included, as in var[i].

To get the objective value, use:

cplex.getObjValue()

where, again, cplex is the name of the Cplex object.

Closing the Model

After associating a model object with a Cplex object, the Cplex object keeps track of changes that occur to the
model, including addition or removal of constraints and changes to coefficients or ranges. In addition, after solving
a model, the Cplex object maintains information about this solution. As a result, if we solve a model, then modify
its constraints, then re-solve the model, CPLEX will use as much information as possible from the previous solution
(for example, the basis) to quickly solve the modified problem. This is useful for many applications that require
iteratively solving, modifying, and re-solving a model.

The IloCplex::clear method clears the current solution from a given Cplex object. This may be necessary if
we are writing a program in which several different models will all be extracted to the same Cplex object. Its syntax
is:

cplex.clear();

where cplex is the name of the Cplex object. This method should be called between each set of model extrac-
tions/solutions.

Finally, before exiting the program the environment should be cleared using the IloEnv::end method:

env.end();

where env is the name of the environment object. This frees the memory allocated to all extractable objects
within the environment.

9

3 Full Examples

This section contains several simple examples for putting the above concepts into practice, including all code needed
for implementation. If in need of more complicated examples, the CPLEX Optimization Studio download includes a
folder of example class files. For me, they are located in:

C:\Program Files\IBM\ILOG\CPLEX_Studio127\cplex\examples\src\cpp

A brief description of all example files can be found through the IBM Knowledge Center6.

3.1 Hard-Coding Constraints

Consider the following simple example problem:

max 5x + 15y

s.t. x + y ≤ 200

x + 4y ≤ 400

x, y ≥ 0

The optimal solution is x = 400
3 ≈ 133.33 and y = 200

3 ≈ 66.67, with an objective objective value of 5000
3 ≈ 1666.67.

The following program defines a model to represent this LP, exports the model to CPLEX to obtain a solution, and
then prints the results.

#include <iostream>

#include "ilcplex\cplex.h"

#include "ilcplex\ilocplex.h"

using namespace std;

int main()

{

// Model Definition

IloEnv myenv; // environment object

IloModel mymodel(myenv); // model object

IloNumVar x(myenv, 0, IloInfinity, ILOFLOAT); // variable x on [0,infinity)

IloNumVar y(myenv, 0, IloInfinity, ILOFLOAT); // variable y on [0,infinity)

mymodel.add(x + y <= 200); // constraint x+y <= 200

mymodel.add(x + 4*y <= 400); // constraint 5x + 15y <= 400

mymodel.add(IloMaximize(myenv, 5*x + 15*y)); // objective max 5x + 15y

// Model Solution

IloCplex mycplex(myenv);

mycplex.extract(mymodel);

IloBool feasible = mycplex.solve(); // solves model and stores whether or ...

// not it is feasible in an IloBool variable called "feasible"

6http://www.ibm.com/support/knowledgecenter/SS9UKU_12.4.0/com.ibm.cplex.zos.help/Examples/topics/
exampleCpp.html

10

http://www.ibm.com/support/knowledgecenter/SS9UKU_12.4.0/com.ibm.cplex.zos.help/Examples/topics/exampleCpp.html
http://www.ibm.com/support/knowledgecenter/SS9UKU_12.4.0/com.ibm.cplex.zos.help/Examples/topics/exampleCpp.html

// Printing the Solution

if (feasible == IloTrue)

{

cout << "\nProblem feasible." << endl;

cout << "x = " << mycplex.getValue(x) << endl; // value of x

cout << "y = " << mycplex.getValue(y) << endl; // value of y

cout << "cost = " << mycplex.getObjValue() << endl; // objective

}

else

cout << "\nProblem infeasible." << endl;

// Closing the Model

mycplex.clear();

myenv.end();

// wait for user to press a key, otherwise the readout will immediately ...

// disappear from the command line

cout << "\nPress [Enter] to continue..." << endl;

cin.get();

return 0;

}

Running this program results in the following command line output:

Tried aggregator 1 time.

No LP presolve or aggregator reductions.

Presolve time = 0.01 sec. (0.00 ticks)

Iteration log . . .

Iteration: 1 Dual infeasibility = 0.000000

Iteration: 2 Dual objective = 1666.666667

Problem feasible.

x = 133.333

y = 66.6667

cost = 1666.67

Press [Enter] to continue...

11

3.2 Automatically Generating Constraints

Consider the following example problem:

min x1 + x2 + x3 + x4

s.t. 2x1 + x2 + x3 + x4 ≥ 1

x1 + 2x2 + x3 + x4 ≥ 1

x1 + x2 + 2x3 + x4 ≥ 1

x1 + x2 + x3 + 2x4 ≥ 1

The optimal solution is x1 = x2 = x3 = x4 = 1
5 = 0.2, with an objective objective value of 4

5 = 0.8. We
could write a program similar to the previous example, individually defining each variable and constraint, but the
constraints here are so similar that they can be easily generated using for loops. The following program uses variable
and constraint arrays to solve the above LP.

#include <iostream>

#include "ilcplex\cplex.h"

#include "ilcplex\ilocplex.h"

using namespace std;

int main()

{

const int n = 4; // number of variables/constraints

// Model Definition

IloEnv myenv; // environment object

IloModel mymodel(myenv); // model object

IloNumVarArray x(myenv, n, -IloInfinity, IloInfinity, ILOFLOAT); // array ...

// of n unbounded variables x

// Constraint Generation

for (int i=0; i<n; i++)

{

IloExpr myexpr(myenv); // empty expression

for (int j=0; j<n; j++)

{

if (j == i)

myexpr += 2*x[j]; // coefficient 2 on diagonal

else

myexpr += x[j]; // coefficient 1 elsewhere

}

mymodel.add(IloRange(myenv, 1, myexpr, IloInfinity)); // i-th constraint

myexpr.end(); // clear memory

}

12

// Objective Generation

IloExpr myexpr(myenv); // empty expression

for (int i=0; i<n; i++)

myexpr += x[i]; // summing all variables

mymodel.add(IloMinimize(myenv, myexpr)); // adding minimization objective

myexpr.end(); // clear memory

// Model Solution

IloCplex mycplex(myenv);

mycplex.extract(mymodel);

mycplex.solve();

// Printing the Solution

for (int i=0; i<n; i++)

cout << "x(" << i+1 << ") = " << mycplex.getValue(x[i]) << endl;

cout << "cost = " << mycplex.getObjValue() << endl;

// Closing the Model

mycplex.clear();

myenv.end();

// wait for user to press a key, otherwise the readout will immediately ...

// disappear from the command line

cout << "\nPress [Enter] to continue..." << endl;

cin.get();

return 0;

}

Running this program results in the following command line output:

Tried aggregator 1 time.

No LP presolve or aggregator reductions.

Presolve time = 0.00 sec. (0.00 ticks)

Iteration log . . .

Iteration: 1 Dual objective = 0.500000

x(1) = 0.2

x(2) = 0.2

x(3) = 0.2

x(4) = 0.2

cost = 0.8

Press [Enter] to continue...

By writing our code in this way, we can easily change the number of variables and constraints to solve a larger

13

version of the above problem. The general version is

min x1 + x2 + . . .+ xn

s.t.


2 1 · · · 1

1 2 · · · 1
...

...
. . .

...
1 1 · · · 2



x1

x2

...
xn

 ≥

1

1
...
1


for any n ∈ N. The example above was the case of n = 4. To see the results for any other number, replace the

value of n in the code. For example, for n = 9 we have:

Tried aggregator 1 time.

No LP presolve or aggregator reductions.

Presolve time = 0.01 sec. (0.01 ticks)

Iteration log . . .

Iteration: 1 Dual objective = 0.500000

x(1) = 0.1

x(2) = 0.1

x(3) = 0.1

x(4) = 0.1

x(5) = 0.1

x(6) = 0.1

x(7) = 0.1

x(8) = 0.1

x(9) = 0.1

cost = 0.9

Press [Enter] to continue...

14

	Introduction
	Obtaining C++
	Obtaining CPLEX

	Using CPLEX in C++
	Linking CPLEX to Visual Studio
	Building a Model

	Full Examples
	Hard-Coding Constraints
	Automatically Generating Constraints

