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Introduction

As society continues its trend towards urbanization it also becomes more
reliant on highly interdependent civil infrastructure networks, wherein
the functionality of components in one system depend on delivery of re-
sources from another (e.g. telecommunications and light rail networks
that require delivery of electric power from the power grid). These sys-
tems are uniquely vulnerable to damage from natural disasters or from
targeted attacks due to the phenomenon of cascading failures that can
cause damage to extend far beyond the original source (see Figure 1).

Figure 1: An illustration of cascading failures. Parts of a rail network
may depend on delivery of electric power in order to function, meaning
that damage to the electric power network may lead to loss of function-
ality in the rail network.

The goal of this study is to help to plan optimal fortifications to a collec-
tion of interdependent networks against a targeted attack or worst-case
natural disaster. The model takes the form of a multilevel optimization
problem which may be computationally intractable to solve exactly for
large networks, and so approximation methods based on linear relax-
ation are developed and tested.

Network Interdiction Game

Our model for disaster preplanning and recovery consists of a trilevel
network interdiction game on a flow network G = (N ,A) represent-
ing a collection of interdependent civil infrastructure systems. It is a
sequential game played by a defender and an attacker in three stages:
Stage 1. The defender chooses a limited set of arcs to defend.
Stage 2. The attacker chooses a limited set of undefended arcs to de-

stroy.
Stage 3. The defender minimizes the flow cost on the resulting interde-

pendent network.
The objective is the flow cost of the network at the end of Stage 3, which
the defender wants to minimize (by protecting important arcs) and the
attacker wants to maximize (by destroying important arcs).

Underlying Interdependent Network

The underlying network G = (N ,A) is a generalized minimum cost
flow network, equipped with net supply values bi for each node i ∈ N
and costs cij and capacities uij for each arc ij ∈ A as in the standard
minimum cost flow problem. Interdependencies are represented using a
binary input dependence model [3], which describes the phenomenon
of one network component requiring delivery of resources from another
network component in order to function.

We define a set I ⊂ A ×A of parent and child arc pairs (ij, kl). Con-
straints are added that cause a child kl ∈ A to become unusable if its
parent ij ∈ A is not saturated.

Trilevel Optimization Model

The trilevel network interdiction game described above can be stated as
the following multilevel mixed integer-linear program (MILP).

min
ξ∈Ξ

max
ψ∈Ψ

min
x,s≥0

y∈{0,1}p

∑
ij∈A

cijxij (1)

s.t.
∑
j:ij∈A

xij −
∑
j:ji∈A

xji = bi ∀i ∈ N (2)

ψij ≤ 1− ξij ∀ij ∈ A (3)
xij ≤ uij(1− ψij) ∀ij ∈ A (4)
xij + sij = uij ∀ij : (ij, kl) ∈ I

(5)
sij ≤ uij(1− yij) ∀ij : (ij, kl) ∈ I

(6)
xkl ≤ uklyij ∀(ij, kl) ∈ I (7)

ξ is a binary vector of the defender’s Stage 1 defenses, with ξij = 1 in-
dicating that arc ij is defended and Ξ being the set of feasible defenses.
ψ is a binary vector of the attacker’s Stage 2 attacks, with ψij = 1 in-
dicating that arc ij is destroyed and Ψ being the set of feasible attacks.
x is the vector of flows set by the defender in Stage 3, while s and y are
slack and binary indicator variables needed to enforce the binary input
dependencies.

Objective (1) is the cost of the final flow network at the end of Stage 3.
(2) are standard network flows conservation constraints. (3) enforce
the fact that arcs defended in Stage 1 cannot be attacked in Stage 2,
while (4) enforce the fact that arcs destroyed in Stage 2 cannot carry
flow in Stage 3. Constraints (5)–(7) enforce the binary input depen-
dencies, and result in a child becoming unusable if there is shortfall in
delivery of flow to its parent.

Solution Algorithms

The overall trilevel model can be viewed as a bilevel program whose
upper level is the defender’s Stage 1 problem. Its lower level is, itself,
another bilevel program whose upper level is the attacker’s Stage 2 prob-
lem and whose lower level is the defender’s Stage 3 recourse.

Cutting Plane Algorithm for the Bilevel Subproblem

The Stage 2–3 bilevel subproblem can be shown to be equivalent to

max
ψ∈Ψ, ρ

ρ (8)

s.t. ψij ≤ 1− ξij ∀ij ∈ A (9)

ρ ≤
∑
ij∈A

cijxij +M
∑
ij∈A

ψij 1>0(xij) ∀x ∈ S (10)

where S is the set of all feasible flows x in Stage 3. In constraints (10),
M is a very large constant and 1>0(x) is a binary indicator function
equal to 1 if x > 0 and 0 otherwise, which ensures that ρ is bounded
above only by defender objectivesfor which the response flow x is fea-
sible for the current attack vector ψ.

This is a single MILP rather than a bilevel program, but it includes an
intractable number of constraints due to the large number of possible
Stage 3 flows in set S. In practice this can be solved using a cutting
plane algorithm by relaxing constraints (10) to include only a subset
of S.

Cutting Plane Algorithm for Stage 2–3 Bilevel Subproblem
1: S ← ∅ // relaxed constraint set
2: ρ2← −∞ // best Stage 2 objective value
3: ρ3←∞ // best Stage 3 objective value
4: ψ ∈ Ψ // any random initial attack
5: repeat
6: Solve the Stage 3 problem for the current attack ψ
7: Set ρ3 and x as its optimal objective and solution, respectively
8: S ← S ∪ {x} // add cut
9: Solve the Stage 2 problem for the new constraint set S

10: Set ρ2 and ψ as its optimal objective and solution, respectively
11: until |ρ2 − ρ3| ≤ ϵ

The objectives from both stages in the main loop bound the true maxi-
mum value of (8), so the algorithm can be terminated when the optimal-
ity gap falls below a desired tolerance ϵ, returning the optimal attack ψ
for the current defense ξ.

Dual Algorithm and Linear Relaxation

Previous work shows that the linear program (LP) relaxation of the
binary input dependence model produces quantitatively similar results
while being significantly simpler to solve exactly [1]. The Stage 2–3
bilevel subproblem of the LP relaxation can be solved in a single step
using the dualize and combine method, replacing the Stage 3 response
problem with its own dual and combining both levels into a single max-
imization. This yields

max
ψ∈Ψ

µ,η≥0,λ

∑
i∈N

biλi −
∑
ij∈A

uijηij

s.t. ψij ≤ 1− ξij ∀ij ∈ A
cij +Mψij − λi + λj + ηij ≥ 0 ∀ij ∈ Ā
cij +Mψij − λi + λj −

ukl
uij

µklij + ηij ≥ 0 ∀ij : (ij, kl) ∈ I

cij +Mψij − λi + λj + µ
ij
kl + ηij ≥ 0 ∀ij : (kl, ij) ∈ I

where Ā ⊆ A is the set of arcs not involved in any interdependencies
and µ, η, and λ are the dual variables for the Stage 3 subproblem. This
is a single MILP that need be solved only once, unlike the cutting plane
algorithm which requires many iterative solutions.

Cutting Plane Algorithm for the Upper Level

The overall trilevel program can then be solved by applying a cutting
plane algorithm analogous to that shown above. The relaxed constraint
set is defined using a subset of observed attacks ψ which is added to
in each iteration. The algorithm terminates and returns the optimal de-
fense ξ when the optimality gap falls below a desired tolerance.

Computational Trials

The above solution algorithms were implemented in Python [4], call-
ing CPLEX to solve the various LP and MILP subproblems involved
in each step. Small test networks were generated using the NETGEN
random flow network generator [2], augmented to select random arcs
leading into demand nodes to act as parents for child arcs chosen ran-
domly from elsewhere in the network. Networks were filtered to ensure
that no feasible attack could disconnect the network. Each network had
24 nodes and 192 arcs. The defender was allowed to defend 10 arcs
while the attacker was allowed to destroy 4.

The trilevel optimization model was then (approximately) solved on the
test network in three ways:

• MILP-CP: binary input dependence solved via cutting plane

• LP-CP: LP relaxation solved via cutting plane

• LP-D: LP relaxation solved via dual algorithm

All three algorithms typically produced nearly identical optimal defense
vectors ξ, with the linear relaxations resulting in optimality gaps with
means of less than 0.02% over all trials. Table 1 shows the computation
times for the solution algorithms.

Int. Density Solution Method
MILP-CP LP-CP LP-D

25% Mean 2660.50 2496.67 861.52
Std. Dev. 1268.06 1303.24 574.10
n 19 19 19

75% Mean 1792.62 1707.48 735.27
Std. Dev. 1979.51 2031.60 893.55
n 22 22 22

Table 1: Solution times (seconds) for each solution algorithm. Int. Den-
sity describes the fraction of demand nodes that act as the source of an
input dependence.

Discussion and Future Work

These preliminary results show that there is potential for the use of the
linear interdependence model in approximation algorithms for problems
based on the binary dependence model. The solution algorithms based
on linear input dependence appear to produce nearly identical results to
those of the much more computationally expensive binary input depen-
dence model.

The main work remaining for this study will consist of conducting more
and more varied computational trials. Tests will also be run on networks
with different topologies and with different distributions of interdepen-
dencies. In addition, it would be valuable to compare the optimal de-
fenses with defenses obtained from simpler heuristics to quantify the
value of an exact solution.
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